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Abstract: This paper presents a design method for infinite impulse response (IIR) filters with an approximately
linear phase characteristic. The design problem of IIR digital filters is generally expressed as the minimization
problem of the complex magnitude error which includes both the magnitude and phase information. However, the
group delay response of the filter obtained by solving such design problem may be distant from the desired group
delay. In this paper, the filter design problem is formulated as a magnitude error minimization problem having
a maximum group delay error constraint and it is optimized using craziness based particle swarm optimization
technique. As a result, the proposed method can design the IIR filters that satisfy the prespecified allowable errors
of the group delay response. The usefulness of the proposed method is verified through some examples.
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1 Introduction
Digital filters are broadly classified into infinite im-
pulse response (IIR) and finite impulse response
(FIR). FIR filters find many applications in image pro-
cessing, waveform transmission, etc. in which phase
distortion becomes a problem because the FIR filters
with perfect linear phase characteristics can easily be
realized and are inherently stable [1, 2]. However, the
group delay of the perfect linear phase FIR filters may
become unacceptably large when high-order filters or
narrow transition bands are required because the re-
sulting delay at the output of the perfect linear phase
FIR filters is half of the filter order. On the other hand,
it is known that an IIR digital filter requires less com-
putation as compared to FIR filter for the same am-
plitude response. Hence, the IIR filters are very im-
portant for the implementation of a signal processing
system with high-speed and with high-precision [3].

The optimal design of the IIR filters in the com-
plex domain with the Chebyshev norm is usually a so-
lution of the following problem:

min
a, b

max
ω∈Ω

W(ω) |Hd(ω) − H(ω)| , (1)

where Hd(ω) is the desired frequency response, H(ω)
is the frequency response of actual filter, a and b are
the filter coefficients, Ω is the frequency bands of in-
terest (e.g., passband and stopband), and W(ω) is a
wighting function. By solving the above problem,
the IIR filters with an approximately linear phase re-

sponse can be obtained because it is a complex ap-
proximation problem which includes the amplitude
and the phase informations. Many methods have
been developped for the solving this problem [4]-[10].
However, the group delay response of the filter ob-
tained by those methods tends to have relatively large
error, especially in the vicinity of the band-edge. This
causes distortion of the output signal. Allpass filters
are frequently used to suppress the group delay error,
but the use of the allpass filter is not necessarily a
good policy because the filter coefficients are redun-
dant. Therefore, it is desirable to realize the filter that
has an equalized group delay without using the allpass
filter. This motivates the investigation on designing
the IIR filters with prespecified maximum group de-
lay errors by directly approximating the group delay
response.

By the way, it is well known that the error sur-
face of IIR filters is usually nonlinear and multi-
modal. Therefore, there is a problem that conventional
gradient-based design methods may easily get stuck
in the local minima of error surface. To overcome
this problem, in recent year, many design methods
based on modern heuristic optimization algorithms
have been researched for IIR filters [11]-[16]. How-
ever, most of the work done is concentrated on ap-
proximation of magnitude response only of the filters.

In this paper, we propose a new design method
using craziness based particle swarm optimization
(CRPSO) technique. In the proposed method, the fil-
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ter design problem is formulated as a magnitude error
minimization problem which has a maximum group
delay error constraint, and is solved using CRPSO.
As a result, the proposed method allows the direct ap-
proximation of the group delay response and can de-
sign the IIR filters which satisfy a prespecified group
delay error. The usefulness of the proposed method is
verified through some examples.

2 Proposed method

This section discusses the strategy to design the
IIR filters with a prespecified group delay error
using craziness based Particle Swarm Optimiza-
tion(CRPSO).

2.1 Canonical PSO and Craziness based
PSO

The PSO algorithm, which was first introduced in
1995 by Kennedy and Eberhart [17], is one of evo-
lutionary computation techniques and can be used to
solve real valued and nonlinear continuous optimiza-
tion problems. Particle Swarm has two primary op-
erators: Velocity update and Position update. During
each generation each particle is accelerated toward the
particles previous best position and the global best po-
sition. The new velocity value is then used to calculate
the next position of the particle in the search space.

Let Xi and Vi denote the positions and the corre-
sponding flight speed (velocity) of the particle i in a
continuous search space, respectively. Using the per-
sonal best position Pbestki of the ith particle at the kth
iterations and the best position Gbestk of the group at
the kth iterations, the particle velocity update equa-
tions in the simplest form that govern the PSO are
given by

Vk+1
i =w · Vk

i + c1 · rand1 · (Pbestk
i − Xk

i )
+c2 · rand2 · (Gbestk − Xk

i )
(2)

Xk+1
i = Xk

i + Vk+1
i (3)

where w is the inertia weighting function, c1 and c2
are the acceleration constant, and rand1 and rand2 are
the random parameters taken from interval [0, 1]. At
each iteration, the fitness of each particle is evaluated
according to the preselected fitness function.

In [18], the global search ability of above dis-
cussed canonical PSO is improved with the help of
the following modifications. This modified PSO is

termed as craziness based particle swarm optimiza-
tion(CRPSO). In CRPSO, the velocity can be ex-
pressed as follows:

Vk+1
i =r2 · sign(r3) · Vk

i +(1 − r2) · c1 · r1 · (Pbestk
i − Xk

i )
+(1 − r2) · c2 · (1 − r1) · (Gbestk − Xk

i )
+P(r4) · sign(r4) · vcraziness

(4)

where r1, r2, r3, and r4 are random parameters uni-
formly taken from interval [0, 1], and sign(r3), P(r4),
and sign(r4) are a function defined as follows:

sign(r3) =

{ −1, r3 ≤ 0.05
1, r3 > 0.05

(5)

P(r4) =

{
1, r4 ≤ Pcr

0, r4 > Pcr
(6)

sign(r4) =

{ −1, r4 ≤ 0.5
0, r4 > 0.5

(7)

Moreover, vcraziness is a random parameter which is
uniformly chosen from the interval [vmin, vmax], and
Pcr is a predefined probability of craziness. In eq.(2),
the two random parameters rand1 and rand2 are in-
dependent. Therefore, if both are large, both the per-
sonal and social experiences are over used and the par-
ticle is driven too far away from the local optimum. If
both are small then both the social and personal ex-
periences are not used full and convergence speed is
extremely slow. On the other hand, in eq.(4), instead
of taking independent parameters, one single random
parameter r1 is used so that when r1 is large, (1−r1) is
small and vice versa. To control the balance between
global and local searches, another random parameter
r2 is introduced. A craziness operator vcraziness is in-
troduced to ensure that the particle would have a pre-
defined craziness probability to maintain the diversity
of the particles.

A more detailed discussion of CRPSO will appear
in [18].

2.2 Magnitude response approximation with
specified group delay error

The frequency response H(ω) of an IIR digital filter is
defined as

H(ω) =
A(ω)
B(ω)

=

N∑
n=0

ane− jnω

M∑
m=0

bme− jmω

, (8)
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where N and M are the orders of the numerator and
denominator, respectively. an and bm are the filter co-
efficients, and b0 = 1 in general. The group delay
response of the frequency response H(ω) in eq.(8) is
written by

τ (ω) = Re

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N∑
n=0

n · ane− jnω

N∑
n=0

ane− jnω

+

M∑
m=0

m · bme− jmω

M∑
m=0

bme− jmω

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (9)

Here, let Hd(ω) be the desired frequency response
which have a desired amplitude response D(ω) and a
desired group delay response τd(ω), i.e.,

Hd(ω) = D(ω)e− jτd(ω)ω. (10)

Then, the minimization problem of the magnitude
error for the filters with a maximum group delay error
specification is expressed as

min
an, bm

max
ω∈Ωa

Wa(ω) |D(ω) − |H(ω)||
subject to Wg(ω) |τd (ω) − τ(ω)| ≤ μg, for ω ∈ Ωg

Pmax < rm, (11)

where Pmax is the maximum radius of the obtained fil-
ter’s pole, Ωa is the frequency bands of interest of the
magnitude response, Ωg is that of interest of the group
delay response. Wa(ω) and Wg(ω) are weighting pa-
rameters for the magnitude and group delay, respec-
tively. Moreover, μg is an allowable error of the group
delay response. To solve the minimizaion problem us-
ing CRPSO, the fitness function is defined as follows:

J(X) = Ja(X) + φg(X) + φp(X) (12)

Ja(X) = max
ω∈Ωg

Wa(ω) |Hd(ω) − |H(ω)|| , (13)

where X = [a0, a1, · · · , aN , b1, b2, · · · , bM], φg(X) is
the penalty function for the maximum group delay er-
ror specification, φp(X) is the penalty function to gu-
rantee the stability of the obtained filter. In this paper,
we use the following penarty functions:

φg(X) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
10 × (Eg − μg)

μg
, Eg > μg

0 , Eg ≤ μg
(14)

φp(X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
10 × (Pmax − rm)

rm
, Pmax ≥ rm

0 , Pmax < rm

(15)

In eq.(14), Eg is the maximum error to a desired group
delay response and is defined as

Eg=max
ω∈Ωg

Wg(ω) |τd (ω)−τ(ω)|−μg. (16)

2.3 Design Procedure

The design procedure of the proposed method is sum-
marized as follows.

Step 0: Generate the initial particle and reset k to 0.

Step 1: If k = iter max, stop; otherwise, go to step
2.

Step 2: Evaluate the fitness J(X) using eq.(12).

Step 3: Search the personal best position pk
i and

group best position pk
g.

Step 4: Update the velocity uk+1
i .

Step 5: Calculate the positions Xk+1
i , and go back to

step 1 with k = k + 1.

3 Design Examples

In this section, numerical examples are presented to
illustrate the effectiveness of the proposed method. In
all the following examples, the CRPSO algoritm pa-
rameters are set as: particle size = 50, c1 = c2 = 2.0,
vcraziness = [0.01, 1.0], Pcr = 0.3, iter max = 10000.
The obtained filter coefficients are given in figure 3.

3.1 Example 1

We first consider the filter with following specifica-
tion.

• D(ω)=

{
1, 0 ≤ |ω| ≤ 0.2π
0, 0.4π ≤ |ω| ≤ π

• τd(ω)=5, 0 ≤ |ω| ≤ 0.2π

• Wa(ω)=

{
1, 0 ≤ |ω| ≤ 0.2π
1, 0.4π ≤ |ω| ≤ π

• Wg(ω)=
{

1, 0 ≤ |ω| ≤ 0.2π

• N = 4, M = 4

• rm = 1.0

For comparison, the IIR filter with the same design
specifications was designed using [6]. Note that the
method of [6] cannot specify the maximum group de-
lay allowable error because this method is based on
complex Chebyshev approximation.

The main advantage of the proposed method is
that it can directly specify the maximum group delay
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allowable error μg. The resulting filters for many dif-
ferent μg are summarized in table 1. Moreover, the
frequency responses of the obtained filter are depicted
in figures 1(a)-(c). In figure 1, the black line, the red
line, and the blue line are the frequency response in
the case of μg = 0.75, μg = 0.50, and μg = 0.25
of the proposed method, respectively. From figure 1
and table 1, it is seen that the group delay responses of
the filter obtained using the proposed method meet the
prespecified group delay error constrain, and the mag-
nitude and the group delay errors have the relationship
of trade-off. Compared with [6], the proposed filters
with μg = 0.75 and μg = 0.50 are much better both
amplitude and group delay responses.

3.2 Example 2

Next, we consider the filter with following specifica-
tion.

• D(ω)=

{
1, 0 ≤ |ω| ≤ 0.5π
0, 0.6π ≤ |ω| ≤ π

• τd(ω)=9, 0 ≤ |ω| ≤ 0.5π

• Wa(ω)=

{
1, 0 ≤ |ω| ≤ 0.5π
1, 0.6π ≤ |ω| ≤ π

• Wg(ω)=
{

1, 0 ≤ |ω| ≤ 0.5π

• N = 12, M = 6

• rm = 0.944

For comparison, the IIR filter with the same design
specifications was designed using [8]. Note that the
method of [8] cannot specify the maximum group de-
lay allowable error.

Figures 2(a)-(c) show the amplitude and group
delay responses of the obtained filters. Table II is the
numerical performance comparison between the pro-
posed method and the conventional method[8]. From
table II, it is confirmed that the proposed method
can realize the filters with much smaller amplitude
and group delay ripples than that of the conventional
method.

4 Conclusion

In this paper, a new method based on craziness based
particle swarm optimization technique was proposed
to design stable IIR filters with prespecified group de-
lay errors. In the proposed method, the filter design

problem was formulated as a magnitude error mini-
mization problem having a maximum group delay er-
ror constraint and it was optimized using craziness
based particle swarm optimization technique. The
proposed method is possible to directly approximate
of the group delay response and can restrict the group
delay response within the preselected allowable error.
Results showed that the proposed method can design
the filters that can not be obtained using the conven-
tional methods based on complex Chebyshev approx-
imation.
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Figure 1: Frequency response of the proposed IIR fil-
ters with the order (N,M) = (4, 4). (a) Overall ampli-
tude response (b) Amplitude response in the passband
(c) Group delay response in the passband
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Figure 2: Frequency response of the proposed IIR fil-
ters with the order (N,M) = (6, 12) in Example 2. (a)
Overall amplitude response (b) Amplitude response in
the passband (c) Group delay response in the passband
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n an bn

0 -0.01573880 1.0
1 0.04318550 -2.57303902
2 0.00803824 2.93936897
3 0.01941263 -1.65907078
4 0.03668810 0.38604360

(a) μg = 0.75

n an bn

0 -0.02051306 1.0
1 0.04487760 -2.56509613
2 0.00686253 2.93250454
3 0.01850206 -1.66192041
4 0.04244655 0.38813655

(b) μg = 0.50

n an bn

0 -0.02524043 1.0
1 0.04372168 -2.54312597
2 0.01194024 2.89926703
3 0.01184250 -1.64869803
4 0.05117428 0.38795595

(c) μg = 0.25

n an bn

0 0.00932661 1.0
1 0.01565213 -0.05543797
2 -0.00265935 1.03796775
3 -0.00905367 -0.29260630
4 0.01331657 0.19736509
5 0.01160070 -0.05185855
6 -0.04527729 -0.00640482
7 -0.01719688
8 0.20919865
9 0.51389781

10 0.60893069
11 0.40088323
12 0.14896291

(d) μg = 0.75

n an bn

0 0.00858001 1.0
1 0.01617954 -0.06190388
2 -0.00898306 1.00264403
3 -0.01185114 -0.29063712
4 0.01348098 0.17633254
5 0.01461809 -0.03548558
6 -0.04301800 -0.00669035
7 -0.01920925
8 0.20781092
9 0.51643860

10 0.59538867
11 0.39091191
12 0.13285242

(e) μg = 0.50

n an bn

0 0.00074443 1.0
1 0.02188631 -0.05198591
2 -0.00767932 1.02937640
3 -0.00419166 -0.28896971
4 0.01313683 0.19029972
5 0.00664542 -0.04385430
6 -0.04928880 -0.02364516
7 -0.02248849
8 0.21978006
9 0.52030301
10 0.60605035
11 0.38486148
12 0.13773941

(f) μg = 0.25

Figure 3: Filter coefficients: (a)-(c) are that in example 1 and (d)-(f) are that in example 2
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